7,679 research outputs found

    Common-Envelope Evolution: the Nucleosynthesis in Mergers of Massive Stars

    Full text link
    We study the merging of massive stars inside a common envelope for binary systems consisting of a red supergiant with a mass of 15-20 Msun and a main-sequence companion of 1-5 Msun. We are particularly interested in the stage when the secondary, having overfilled its Roche lobe inside the common envelope, starts to transfer mass to the core of the primary at a very high mass-transfer rate and the subsequent nucleo-synthesis in the core-impact region. Using a parametrized model for the structure of the envelope at this stage, we perform 2-dimensional hydrodynamical calculations with the Munich Prometheus code to calculate the dynamics of the stream emanating from the secondary and its impact on the core of the primary. We find that, for the lower end of the estimated mass-transfer rate, low-entropy, hydrogen-rich material can penetrate deep into the primary core where nucleosynthesis through the hot CNO cycle can take place and that the associated neutron exposure may be sufficiently high for significant s-processing. For mass-transfer rates at the high end of our estimated range and higher densities in the stream, the stream impact can lead to the dredge-up of helium, but the neutron production is too low for significant s-processing.Comment: 5 pages, 2 figures, to appear in the proceeding of ``Binary and Multiple Star Systems'' (Bormio (Italy), June 2000

    On the role of recombination in common-envelope ejections

    Full text link
    The energy budget in common-envelope events (CEEs) is not well understood, with substantial uncertainty even over to what extent the recombination energy stored in ionised hydrogen and helium might be used to help envelope ejection. We investigate the reaction of a red-giant envelope to heating which mimics limiting cases of energy input provided by the orbital decay of a binary during a CEE, specifically during the post-plunge-in phase during which the spiral-in has been argued to occur on a time-scale longer than dynamical. We show that the outcome of such a CEE depends less on the total amount of energy by which the envelope is heated than on how rapidly the energy was transferred to the envelope and on where the envelope was heated. The envelope always becomes dynamically unstable before receiving net heat energy equal to the envelope's initial binding energy. We find two types of outcome, both of which likely lead to at least partial envelope ejection: "runaway" solutions in which the expansion of the radius becomes undeniably dynamical, and superficially "self-regulated" solutions, in which the expansion of the stellar radius stops but a significant fraction of the envelope becomes formally dynamically unstable. Almost the entire reservoir of initial helium recombination energy is used for envelope expansion. Hydrogen recombination is less energetically useful, but is nonetheless important for the development of the dynamical instabilities. However, this result requires the companion to have already plunged deep into the envelope; therefore this release of recombination energy does not help to explain wide post-common-envelope orbits.Comment: 17 pages, 10 figures, submitted to MNRAS. Comments are welcom

    Estimate of the possibility of conducting mass spectrometric measurements of the matter of lunar surface

    Get PDF
    Electron beams studied for use in lunar soil spectrometric analysi
    corecore